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All carbon allyl radicals play a fundamental role in both
organic and theoretical chemistryhey are the simplest example
of a species exhibiting negative spin density on the central

carbon atom and frequently appear as intermediates in hetero-

cyclic chemistry. Many allyl radicals containing one or more
heteroatoms have also been intensively studlieat, curiously
very little is known concerning those incorporating a phosphorus
atom3 1¢*-Phosphaallyl radicals have been spectroscopically
observed but the presence of the ylidic bond makes their
electronic structure barely comparable with those of classical
3n-electron systents.Koeniget al. reported that the photolysis

of 3-chlorodiphosphiranes gave rise to diphosphiranyl radicals
B, which underwent a ring-opening reaction affording 1,3-
diphosphaallyl radical€. However, direct observation of these
short lived radical® andC was not possible in the temperature
range from—90 to 30°C, and their transient existence was
postulated based on the ESR spectra of spin-trapping products.

Recently, we have demonstrated that the diphosphacyclopro-

penium ion1*62 and the four-membered heterocy@e were
stabilized forms of the transient1,30%- and 12,302-diphos-
phaallyl cations3™ and 4+, respectively’® These results
prompted us to investigate the redox properties of the diphos-
phirenium saltLt, and here, we report the synthesis of a stable
1,3-diphosphaallyl radical®, as well as the results @b initio
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Figure 1. (a) Experimental ESR spectrum attributed to the radical
in THF at 293 K. (b) Simulated spectrum [hf coupling constants
employed:a, = 9.4 G (2 P),an = 9.9 G (1 N), anday = 1.5 G (2
N)]. (c) Experimental ESR spectrum attributed to the radicah the
solid state at 293 K.
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calculations on the radical isomets—5" (amino instead of
diisopropylamino groups) (Scheme 1).

Cyclic voltammetry of heterocyclelt(BF,~) in dichlo-
romethane (0.1 M-Bus;N*TBF4~, 100 mV/s) at room temper-
ature under argon exhibited an irreversible reduction peak at
Ey¢d= —1.55V vs SCE. This result implies that reduction of
17 provides an unstable radical which rearrangasa chemical
process. Preparative scale electrolysis of catloh was
performed at room temperature: reduction-dt6 V passed 1

(7) Elemental analysis of crystals 4f [found: C, 56.50; H, 10.32; N,
9.86] is in agreement with {gH4,N3P,-0.5CHClI, [calcd: C, 56.17; H,
10.39; N, 10.08]. The presence of g, was confirmed by*H and13C
NMR spectroscopies, after oxidation of a CR€blution of4*. All attempts
to remove CHCI, from the crystals gave rise to a red oily material.
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Table 1. Calculated Parameters for Derivativ#s—5" at UHF/ Scheme 2
6—31g* Level of Optimization 1€
20 3. 4 5 " — ’D'l
3 3 3 3 NR
p'CN‘ - P‘g‘p?‘Nz ‘ "‘.‘ . g\ \ 3 2
N : N NERPEN PP A RoN—P P-NR,
.
energy 32.4 6.2 0 27.4 . . “1e
PiCP  1.781 1.722 1.763 1.805 2 |4 ] /e
pPCh  1.785 1.851 1.763 1.812 _ _ )
PINP 1,917 1.728 1.717 cyclic voltammetry (100 mV/s) ofi* showed an irreversible
P2NP  1.681,1.861 1.711,1.722 1.728 1.714 oxidation wave at-0.15 V vs SCE. However, at 5 V/s, the
CN bb 1.419 1.386 1.384 1.384 oxidation process became quasi-reversible. Preparative oxida-
Ellpz 2.780 3.079 3.002 2.180 tion of radical 4° via electrolysis in CHCl, (0.1 M
CP2¢ 1025 119.0 116.7 74.1 “BE, 100 | d diphosphireni |
Pid 030(0.06) 1.74(020) 085(020) -006(0.10)  'BUN"BFs, 100 mV/s) regenerated diphosphirenium salt
0.10 0.06 0.43 0.46 1*(BF47) (60% vyield). Interestingly, when the oxidation 4rf
p2d —0.04 (-0.04) 0.05(0.09) 0.85(0.20)  0.01 (-0.01) was performed in CDGlusing trifluoromethanesulfonic acid,
ca o 7%8(7) " 00;17 0.13 00-‘;3 01D o 8%48 o we initially observed the formation P NMR of the cationic
' —o(.él )T '—0.2(_5 13 - '_0_2(_2 11 0. —é.z'a ) four-membered heterocyc (CFRSO;™) (AX system at 211
Nid  —0.01(0.01) —0.03(-0.02) 0.01(0.03)  0.04(0.02) and 181 ppm,Jep = 35 Hz) at —=50 °C. As previously
—1.06 —1.04 —-1.03 -1.02 observed? 2* rearranged after a few minutes at room temper-
N2d 0.01 1(Ong) 0.01 1(00-(572) 0.01 1(00-g3) 0.01 1(Od(lﬂ) ature affording the diphosphacyclopropenium shit (90%
—1. —1. —1. —1. . . 2 2_
N ~0.09 (-0.04) —0.04 (-0.01) —0.04 (-0.05) 0.10 (0.05) yield). Since we h:j\rve already shown that the* 3o
20.86 2084 0.85 ~0.82 diphosphaallyl catiod™ was the direct precursor &, these

- results corroborate that the starting paramagnetic species was
aRelative energy (kcal mot) at (p)MP4SDTQ(fc)/6-31g*//UHF/

! Ot Sb AR X indeed the diphosphaallyl radicéd.
6—31g* level, with zero-point vibrational energy correctidrBond Sch 2 . th I The struct f
distances (A)¢ Bond angles (deg} Total atomic spin densities, Fermi cheme - summarizes ihe overall process. e structure o

contact analysis in parentheses, and total atomic charges in ftako- the initial transient radicaD*, as well as the nature of the
and endocyclic bond lengths. chemical process leading #, remains uncertain and might
involve other transient radicals such &tsor 5°.

equiv of charge and gave a deeply red, highly oxygen-sensitive ~ Before this work, among thes?,30>-diphosphaallyl systems,
solution of a paramagnetic speciés The radical* can also  only a few stable anions were knoWwand no cations have been
be generated by adding lithium metal to a THF solutiod tf isolated™® The 12 30%-diphosphaallyl radicad” completes the
Despite its high solubility in all classical solvents, the radical series and, moreover, is certainly one of first isolated allyl
4+ prepared in dichloromethahisas been isolated as red crystals, radical.
not suitable for an X-ray diffraction study, from a pentane
solution at—20 °C [60% yield, mp= 9596 °C (dec.)]. The Acknowledgment. ‘!’hanks_ are due to A. Berndt, P. Tordo, and M.
molecular weight o obtained from mass spectroscopy [(FAB/ Geoffroy for helpful discussion, A. Mari for ESR measurements, D.
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during the reduction process af. The ESR signal from a
THF solution of4 [g = 2.0048] (Figure 1a) did not change in  JA970584D
the temperature range fr0m6_0 to 25°C ‘jind was retained in (8) All of the quantum chemical calculations were performed with the
the. §0||d state with b"oaden'ng of the lines (FlgU(e 1c). The Gaussian 94et of program system&aussian 94Revision A.1); Frisch,
splitting pattern (5 lines, 1:3:4:3:1) can be explained by the I}\?/I.be; ’\'I;Irtfks&hG. w,; SCTegelkH'hBii ii”'PP' M. W.;é]oxnf\;l)n, B. G.;
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ay=99G (1 N),anday = 1.5G (2 N). eigenvalue for®of each doublet species was 0-70.78, after spin
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